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ABSTRACT

Audiovisual speech recognition is an emerging research topic. Lipreading is the recognition of what someone is
saying using visual information, primarily lip movements. In this study, we created a custom dataset for Indian
English linguistics and categorized it into three main categories: (1) audio recognition, (2) visual feature
extraction, and (3) combined audio and visual recognition. Audio features were extracted using the mel-frequency
cepstral coefficient, and classification was performed using a one-dimension convolutional neural network. Visual
feature extraction uses Dlib and then classifies visual speech using a long short-term memory type of recurrent
neural networks. Finally, integration was performed using a deep convolutional network. The audio speech of
Indian English was successfully recognized with accuracies of 93.67% and 91.53%, respectively, using testing
data from 200 epochs. The training accuracy for visual speech recognition using the Indian English dataset was
77.48% and the test accuracy was 76.19% using 60 epochs. After integration, the accuracies of audiovisual speech

recognition using the Indian English dataset for training and testing were 94.67% and 91.75%, respectively.

1. Introduction

With recent technological advancements, pattern recognition has
become vital, as it enables computers to imitate how the human brain
perceives the environment (Mesbah et al., 2019). Compared to other
recognition systems, such as fingerprint, gesture, and facial identifica-
tion, audiovisual speech recognition is more advantageous and reliable,
making it a fundamental part of the human-computer interface. Lip-
reading Abdelwahab and Busso (2019), which involves analyzing video
data to interpret the movements of the lips and other facial features, and
requires several essential processes such as pattern recognition, image
processing, and computer vision. These processes enable developers and
researchers to create more precise and dependable audiovisual speech
recognition systems for various applications, including assistive tech-
nologies and security systems. Audiovisual speech recognition has the
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advantage of lipreading and image processing capabilities that help
speech recognition algorithms to identify ambivalent words more reli-
ably. Therefore, building an audiovisual speech recognition model to
translate audio and visual inputs is the main goal. To aid future studies in
this area, this study evaluated the performance and restrictions of a
hybrid model employed for audiovisual speech recognition and the re-
sults are detailed in this paper.

The motivation for the proposed work is to help people with impaired
hearing. People with hearing impairment often rely on lipreading to
understand others in noisy environments or when audio signals are un-
clear. However, lipreading requires training and it can be challenging for
hearing-impaired individuals to detect spoken words. Audiovisual speech
recognition, which includes the interpretation of both audio and visual
signals, can be the solution for this problem and help people with hearing
impairments participate in conversations. The goal of this project is to
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develop an algorithm for audiovisual speech recognition that predicts
spoken words from videos without audio, and vice versa, to assist people
with hearing impairment.

The following are the primary goals of this research work:

e Create an Indian English language database;

e Develop a visual speech recognition algorithm;

e Improve feature extraction and pattern learning by altering the neural
network;

e Obtain the finest audiovisual speech recognition results possible.

The scientific significance of the anticipated models encompasses
multimodel understanding, neuroscientific insights, and cross-model
learning, whereas the practical significance of the anticipated models
includes improved speech recognition accuracy, accessibility, security,
and authentication.

The remainder of this paper is organized as follows: Section 2 dis-
cusses the existing audio-visual speech recognition methodologies and
tools. Section 3 describes the proposed technique, which is broken down
into three basic models: the auditory, visual, and fusion models. The
findings are described in detail in Section 4. Projected and subsequent
works are described in Section 5.

2. Audiovisual speech recognition tools

This section discusses previous works related to audiovisual and vi-
sual speech recognition, including a review of the different datasets used
in these studies and the feature extraction and classification strategies
employed. Additionally, this section provides insights into the current
state of knowledge in this field and identifies areas for future research. A
hybrid algorithm for audiovisual voice recognition was proposed (Deb-
nath and Roy, 2021). The VISWa database was subjected to multiclass
support vector machine and naive Bayes classification. An innovative
Hahn Convolutional Neural Network design was proposed (Mesbah et al.,
2019) and they used it to analyze the AVLetters, OuluVS2, and BBCLRW
datasets. The CRSS-4ENGLISH-14 corpus dataset was used by Tao and
Busso (2018a) They used a deep neural network with a hidden Marko
model (HMM) as well as a Gaussian mixture model with a hidden Marko
model to achieve greater accuracy. Abdelwahab and Busso (2019) and
Wu et al. (2019) introduced a time-domain speech separation network
for the Lip Reading Sentences 2 (LRS2) dataset. They used an audio
encoder for audio processing, a video encoder for lipreading, and an
audiovisual speech recognition system for audiovisual speech recogni-
tion. Their approach involved using these different components to
analyze and separate speech signals from a video, thereby enabling more
accurate speech recognition in noisy environments.

Using the Lip Reading in the Wild (LRW) dataset, Petridis et al.
(2019a, 2019b) presented audiovisual speech recognition as an
end-to-end process. They used residual neural networks and
bi-directionally gated recurrent units. Goh et al. (2019) used a custom
dataset for their work, with 50 males and 50 females as representatives,
and employed recurrent neural networks (RNNs) to recognize audiovi-
sual speech from 5,000 visual speech samples and 1,000 audio samples
with a 2 s duration. Sooraj et al. (2020) studied different methods of
lipreading, mainly focusing on speech processing. Lipreading techniques
use deep learning and machine learning. The main aspects of visual
speech are lip detection, lip feature extraction, classification methods,
challenges, and different open-source database details. Frew (2019) used
the Viola-Jones algorithm for lip detection and mouth regions of interest
(ROI) extraction and DWT for feature extraction. The HMM was used as a
classifier for visual speech recognition, mel-frequency cepstral coefficient
(MFCC) was used, and the HMM was used as an audio classifier. The
integrated audiovisual speech, through coupled hidden Markov model
(CHMM), was used as the classifier. Afouras et al. (2018a, 2018b) pro-
posed sentence recognition and compared two lipreading methods. The
authors worked on the audio when it was noisy as well and they
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introduced new and publicly available datasets, like the LRS2, which
holds thousands of natural audio and spoken sentences from BBC tele-
vision programs. Afouras et al. (2018a, 2018b) introduced a novel
multimodal database called the LRS3-TED, which includes 400 h of TEDx
videos and is one of the benchmark datasets used for visual speech
recognition.

The LRS3-TED dataset, for which Makino et al. (2019) used a RNN
transducer, is available on YouTube. It is TEDx videos and compared with
other large datasets called YTDEV18. Tao and Busso (2018a, 2018b) used
the CRSS-4ENGLISH-14 database, which contains 61 h of speech from
155 people. The authors trained the dataset using deep neural networks
and HMMs. The LRS2 database was used by Yu et al. (2021) for audio-
visual speech recognition. To integrate the auditory and visual data, they
applied a hybrid approach. Tan et al. (2020) used a multistage multi-
modal network to perform audiovisual voice detection. Their experi-
mental findings demonstrated improved output and accuracy when the
two models were trained independently.

Martinez et al. (2020) proposed a bidirectional gated recurrent unit
that used the LRW and LRW1000 datasets; the proposed model exhibited
improvements of 1.2% and 3.2%, respectively. Meutzner et al. (2017)
proposed a state-based approach for integrating audio and visual speech
in audiovisual speech recognition. They suggested using a deep neural
network to combine audio and visual information to improve recognition
accuracy. This technique involves modeling audio and visual streams
separately and then integrating them using a state-based approach.
Meutzner et al.’s (2017) method is one of the most recent techniques in
this field and has shown promising results in improving audiovisual
speech recognition accuracy. Yuan et al. (2018) recommended a multi-
modal gated recurrent units for the audiovisual recognition of speech
systems. It includes three main steps: the initial stage extracts features
from the database, the second step is data augmentation, and the third
step is integration and recognition. Tao and Busso (2021) used a sizable
audiovisual archive with a duration of approximately 60 h as well as a
database with various surroundings and data gathered from various
channels. Feng et al. (2017) developed a multimodal RNN for audiovisual
speech recognition. Their system consisted of three primary parts: the
audio component, the visual component, and the integration of the audio
and visual parts through a RNN. The audio and visual components were
modeled separately and then fused at the neural network level to
improve the recognition accuracy. This approach was shown to be
effective in recognizing speech in noisy and challenging environments,
making it a promising technique for various applications such as
human-robot interactions and speech-enabled devices. Agarwal et al.
(2021) used two publicly accessible datasets, GRID and TCD-TIMIT, as
well as specialized Asian databases. From these datasets, the authors
selected nine hundred random videos.

Stafylakis and Tzimiropoulos (2017) used a BBCLRW dataset and a
residual network with long short-term memory (LSTM) for training and
testing, from which they achieved better accuracy. Li et al. (2019) worked
on lipreading using a deep neural network with multiple models, dynamic
vision, and dynamic audio sensors. First, they trained each model indi-
vidually, then they combined the models and trained the network.
Nadeemhashmi et al. (2018) proposed a 12-layer convolution neural
network (CNN) for lipreading on a MIRACLE-VC1 dataset. Santos and Abel
(2019) worked on various deep neural networks for visual speech recog-
nition to obtain better results and outcomes. Jang et al. (2019) worked on
lipreading in two different ways: first, they used complete lip images and
then they used spots around lip benchmarks. They used the OuluVS2
dataset and applied the VGG-m neural network to improve accuracy. Tao
and Busso (2018a, 2018b) proposed an LSTM for audiovisual activity
detection and trained a bimodal RNN with an LSTM layer.

Wand and Vu (2018) used the GRID dataset to train and test a deep
neural network. Wei et al. (2018) suggested a novel system for lipreading
called a densely associated convolution network, which captures visual
representations from color images. The authors worked on 3D lip phys-
iological features based on the position and structure of the face. Petridis
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et al. (2019a, 2019b) proposed a hybrid algorithm for audiovisual
recognition. The authors applied CTC and the attention architecture to
the LRS2 database for audiovisual speech recognition.

Jadczyk (2018) conducted a Polish audiovisual voice recognition
project wherein the work was divided into three subcategories: audio,
visual speech, and integration. For the audio, they employed MFCC to
extract the features, an HMM to extract the lip features, and multistream
HMM for incorporation. Shashidhar and Patilkulkarni (2021) worked on
a traditional lipreading database. The authors used a custom 250-item
dataset and applied a pre-trained model called VGG16 for better accu-
racy. Cornejo and Pedrini (2019) proposed a deep CNN (DCNN) for au-
diovisual voice detection. Their approach first involved separating the
audio from the video and then extracting audio data using
two-dimensional CNN. They also extracted visual speech using principal
component analysis and linear discriminant analysis and translated it
into the census transform. Finally, audio and visual feature extractions
were merged to improve the accuracy of audiovisual voice detection.
Their method showed promising results on various benchmark datasets,
demonstrating the effectiveness of DCNNs for audiovisual voice detec-
tion (Shashidhar and Patilkulkarni, 2022).

Additionally, Shashidhar et al. (2022) created a specific dataset for
the Kannada linguistics and used a feed-forward CNN to integrate au-
diovisual and speech recognition.

The authors introduced a new approach called a multimodal sparse
transformer network (MMST). This method employs a sparse self-
attention mechanism to focus selectively on important parts of the data
and thus improve global information processing. Dupont and Luettin
(2000) demonstrated the high performance of their proposed system on a
large database of continuously spoken digits involving multiple speakers.
The authors used a combination of the MSHMM, denoised MFCCs, and
visual features to improve the results of multimodal isolated word
recognition. They demonstrated that this approach can lead to better
word recognition accuracy than using only audio features (Nefian et al.,
2002).

Noda et al. (2015) presented two statistical models, namely the
CHMM and factorial HMM (FHMM), for audiovisual integration. The
performance of AV speech recognition varies greatly, both in terms of the
overall recognition score and the amount of audiovisual gain (Grant
et al,, 1998). To address this variability, consonant confusion was
analyzed based on phonetic features to determine the level of redun-
dancy (Heckmann et al., 2002). The authors conducted a recognition task
using manually controlled noise to evaluate the performances of various
weighting schemes in neural networks, all of which were trained using
clean data (Song et al., 2022). The inclusion of the visual modality in AV
Taris outperformed the audio-only version of Taris, indicating the
effectiveness of utilizing visual information in speech recognition within
Taris’s real-time decoding framework (Sterpu and Harte, 2022).

The main limitations or disadvantages of the existing methods are the
use of existing data, such as YouTube and TEDx video datasets, which
poses dependence on visual cues, complexities, and limited datasets. To
overcome these limitations, we developed custom datasets for a natural
environment with a signal-to-noise ratio of 20 db.

3. Proposed method

In this section, we describe how we created a dataset, extracted and
classified features from an audio model, extracted and classified features
from a visual model, and integrated the visual and audio components
using a DCNN. Fig. 1 shows the proposed block diagram of this process.

3.1. Dataset formation

The software was trained to recognize lip-gesture sequences using a
movie database in which users list specific words. A 4K professional-
grade video recorder, movable lights, and a controlled, isolated envi-
ronment were used to record the dataset. The authors used a high-
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definition camera with a resolution of 1080 x 1920 pixels to create
their dataset. They were able to capture an average of 80-100 frames per
video with a duration of 1.6 s recorded at a rate of 60 fps. This amount of
data was sufficient for conducting the processes used in our research. The
typical video size for one person was 10 MB.

The dataset used in the study consisted of 80 videos captured from 16
participants (8 males and 8 females aged between 18 and 30 years).
Recordings were collected in a controlled and quiet environment with
minimal background noise. The purpose of collecting these data was to
develop and evaluate the lipreading process using tools such as speech
recognition. Each of the 16 participants spoke eight words, which were
recorded five times. Consequently, the dataset consisted of 640 bytes of
information (8 words x 5 times x 16 persons).

Here, nine English words, “About”, “Bad”, “Bottle”, “Come”, “Cow”,
“Good”, “Pencil”, “Read”, and “Where”, were used. These words were
selected randomly from an average of eighty-odd movies. The videos in the
dataset were edited using a Microsoft video editor to include only 1 s of
speech for each word. The video frame rate was adjusted to 30 fps. Two sets
of datasets were created: a training set comprising 75% of the total data and
a validation set comprising 25% or 21 videos. The training set was used to
train the model and the validation set was used for model evaluation.

In formation of the database videos are recorded at a resolution of
1,080 pixles with a smooth frame rate of 60 frames per second, resulting
in high-quality footage. Each video has an average duration of 1-1.20 s,
and their file size typically falls around 10 megabytes.

3.2. Acoustic model

The video data were first used to generate audio files, which were
then saved in wav. format using the FFmpeg tool. The open-source Py-
thon library Librosa was then used to extract audio features, using MFCC
to extract features from the audio that can be more easily categorized.
These features were combined to create a 193 x 1 feature vector. This
vector was then passed through two dense layers, followed by a CNN
consisting of one ConvlD layer, one MaxPooling 1D layer, one batch
normalization layer, and one dropout layer. One-dimensional CNNs (1D
CNNis) are effective in processing signals with sequences in one dimen-
sion, making them useful for audio signal analysis. The outputs of the
associated layers of the audio model were then obtained as follow:

193

a' —b' + Z(Conle(W,-,X,train,audio[i]) (€8]
i1

y' =R(a") 2

¥ =R(wH' +1?) 3)

y? :R(wzy2 + b3) (€)]

yt= R(wzy2 + b3) 5)

In the proposed model, the “layer i” vector is represented by y and the
ReLu activation function is denoted by R. The weights and biases of layer
i are denoted by W' and b', respectively. A softmax layer was added to the
network for classification. The model was trained using cross-entropy,
which was expressed as a loss function.

L2 (357, y™7) = =y log(377) = (1 =y™7)log(1=3°7) ©®

3.3. Visual model

To extract the initial mouth region from the video, the researchers
used the DIib library available in Python 3, as depicted in Fig. 2. The
regions were then converted to grayscale to reduce the complexity of the
model, as shown in Fig. 3. The outer lip location was then obtained and
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Fig. 1. Proposed block diagram.

stored in the feature vector. Next, a deep LSTM network was created,
which is a model that includes a network of LSTMs and dense layers. An
LSTM type of RNN (LSTM RNN) can learn order dependence in sequence
prediction problems. The three gates of the LSTM are forget, input, and
output gates.

The first layer of the deep LSTM network model contained an LSTM
layer with 128 hidden units and 8 time stamps. The internal workings of
the LSTM cell can be broken down into 3 gates: the input gate, which
measures the importance of the incoming data; the forget gate, which
decides whether to retain or forget information from previous time steps;
and the output gate, which determines the most relevant output to
generate.

¢ =tanh(W_[d',¥'] +b,) )
ry=c(W,[a"",¥] +b,) ®)
ry=o(Wi[a™" . ¥] +b) ©
ry=c(W,[a™",¥] +b,) (10)

Fig. 2. Extraction of mouth regions of interest (ROI).
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Fig. 3. Grayscale conversion.

d=r, ¢+’ an

a' =T, tan h(c") (12)
where c represents the memory cell, t represents the time stamp, and I'
represents the update gate. The forget gate is represented by Iy, and the
output gate by I',. Wystands for the forget gate weights, W, for the output
gate weights, b for bias, and c' for contestant cell variables.

Subsequently, another LSTM layer was added, which resulted in the
output of the second layer being as follow:

oI’ = tanh(W1,[al", ] + b1,) 13)
r't,=oc(Wi,[al"",x1'] + b1,) a4
I'y=c(Wl[al<""> x17"] +bly) (15)
r't,=o(Wi,[al="" x1¥"] +b1,) (16)
cl<> = ]"]u a<t> + 1"1/_ C]<r—l> (17)
al<” =T, tan h(c1<"~) (18)

The next three layers were very thick. These three dense layers pro-
duced the following output equations:

y* = R(W2 x al + a2) (19)

¥ = R(W3 x y* + b3) (20)
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¥ =R(W4 x y + b4) 2D
Finally, this network had a softmax layer added for categorization. The
cross-entropy, a function given by, serves as the loss function used to
train the model.

L= (377) =y 1og(3™"7) = (1 =y=)log(1 =3°7) (22)

3.4. Combination of acoustic and visual model

The fusion model consists of three components: the auditory, visual,
and audiovisual speech recognition models. The audio-only portion uses
the same feature extraction method as the audio model, followed by
building a DCNN with a softmax layer. The equations for this can be
expressed in a manner similar to that of an audio model as follows:

193

a'=b' + " (ConvID(W, X _train_audioli]) (23)
pa

Y =R(a') (24)

v =R(Wy' +5%) (25)

¥ =R(wWy* + ) (26)

¥ =R(w'y’ +5%) 27)

¥ =R(wy* +5°) (28)

Similar to the video model, the video features were retrieved in the
visual-only model. Subsequently, a deep LSTM network was built. A total
of 128 unseen units with 8-time imprints were present in the top LSTM
layer.

" =tanh(W.[a~" ,x~] + b,) (29)
Fu —_ G(Wu [a<z—l>7x<r>} + bu) (30)
Ff — G(W/ [a<t—l>7x<t>] + b[) (31)
I’():(r(W(, [a<”l>,x<’>} +b,,) (32)
o< :Fu* /C\</> + Ff* C<r—1> (33)
a~” =T, tan h(c<") (34)

These were monitored through a batch normalization layer, a dropout
layer, and another LSTM layer with eight timestamps and 128 hidden
units.

a = tanh(W1,[al=" x~] +b1,) (35)
rt,=c(wi,[al<" x1<"] +b1,) (36)
I'y=c(Wl[al"™"> x1¥”] +bly) (37)
', =o6(Wl,[al®"> x1¥"] +bl,) (38)
A<” =T, el +Tlcl5" (39)
al~” =T1, tan h(c1<") (40)

Dropout and dense layers occur after the LSTM layer. Hence, the
resultant equation for the dense layer is as follows:
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Yo = R(W2 x al<® + b2) (41)

The feature map from the first dense layer of the audio-only portion
and the feature map from the first LSTM layer of the visual-only portion
were integrated. Subsequently, using Egs. (3) and (12), we obtained

a.=[al*",y"] (42)

The three thick layers of the DCNN were fed with the resulting feature
map as input. A batch normalization layer and dropout layer were
generated after the first two dense layers. The generated feature map was
fed forward and provided as input to the DCNN with three dense layers. A
batch normalization layer and dropout layer were generated after the
first two dense layers. A fundamental feedforward neural network
without loops is a DCNN. Fig. 4 depicts the architecture of a DCNN.

CNNss are a class of artificial neural networks inspired by the human
visual system. They have proven to be extraordinarily effective in solving
complex computer vision tasks, making them the cornerstone of modern
machine learning and artificial intelligence. DCNNs are composed of
multiple layers, each with a specific role in extracting and transforming
visual features from input data.

One of the strengths of DCNNs is their ability to automatically learn
the hierarchical representations of features. The lower layers capture
simple features such as edges and corners, whereas the higher layers
combine these features to recognize more complex patterns, ultimately
leading to object recognition. DCNNs are trained using large datasets,
which is typically supervised learning. This process involves feeding
labeled images into the network and adjusting their internal parameters
(weights and biases) through backpropagation and gradient descent. The
goal is to minimize the loss function, making the network’s predictions as
close as possible to the true labels. DCNNs have demonstrated the ability
to transfer knowledge learned from one task or dataset to another. This is
particularly useful when working with limited labeled data, as pretrained
models can be fine-tuned for specific tasks.

Equations for the output layer are:

Yar = R(wai X ac + bar) (43)
Yoo = R(Waz X ya1 + bao) (44)
Ya3 = R(Waz X Yar + by3) (45)

Finally, all three steps are combined, resulting in a vector that in-
tegrates the output vectors of the aforementioned three steps. Hence,
based on Egs. (28), (41) and (45), we obtained the following:

a2 = [y, Y, Y3 (46)

The feature vector obtained from the audio-only model was fed as

Hidden layer 1

Input layer Hidden layer 2 Output layer

Fig. 4. The structure of deep convolutional neural networks (DCNN).
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input to the DCNN. This network consists of three dense layers, followed
by a batch normalization layer and a dropout layer.

Yo = R(Wer X @ + ber) (47)
Y2 = R(WCZ X Ye1 + bz‘Z) (48)
Y3 = R(WL‘3 X Yo + bc}) (49)

4. Result and discussion

This section discusses the evaluation and comparison of the proposed
method’s performance against existing methods based on various metrics
such as training and testing accuracy, number of epochs, accuracy plot,
loss plot, confusion matrix, and classification matrices. Further, the
comparison between the audio, visual, and audiovisual models is
discussed.

4.1. Acoustic speech recognition evaluation

The English dataset was trained for 60 epochs and the training ac-
curacy reached 93.67%, as shown in Fig. 5. The test accuracy achieved
was 91.53%.

We compared the training and validation accuracies of the proposed
model based on the number of epochs used. The results are presented in
Fig. 6. The figure indicates the variation in the training and validation
accuracy as the number of epochs increases. Additionally, Fig. 7 illus-
trates the changes in the training and validation losses as the number of
epochs increases.

The number of words categorized into various types is shown in the
auditory model confusion matrix, which is trained on English datasets. The
precision and misclassification of individual words are shown in Fig. 8. The
system correctly identified the first word, “About”, 81% of the time and
misclassified it only 19% of the time. “Bad”, the second word correctly
predicted that it would be recognized with 100% accuracy without any
misclassification. According to the graph, the third word, “Bottle”, was
correctly predicted 86% of the time, whereas 14% of the time it was
incorrectly classified as “About”, “Bad”, or “Cow”. The fourth word,
“Come”, was recognized with an accuracy of 86% and misclassified 14% of
the time as “About”. The fifth word, “Cow”, was correctly predicted 86% of
the time and misclassified 14% of the time as “About” and “Coming”. The

val _accuracy: 0.9153
Epoch 195/200

18/18 [
val _accuracy: 0.9101
Epoch 196/200

18/18 [
val_accuracy: 0.8942
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18/18 [
val_accuracy: 0.9206
Epoch 199/200
18/18 [
val_accuracy: 0.9206
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val_accuracy: 0.9153
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sixth word, “Good”, was correctly classified 95% of the time and incor-
rectly classified 5% of the time. The seventh word, “Pencil”, was correctly
predicted 100% of the time and was recognized with 100% accuracy. The
eighth word, “Read”, was predicted with 90% accuracy and incorrectly
predicted 10% of the time as “Where”. The ninth word, “Where”, was
correctly predicted 100% of the time with 100% accuracy and no
misclassification. Table 1 presents a classification report for the audio
database. The perceived precision, recall, accuracy, and F1-score of the
proposed system were 92%, 92%, 92%, and 92%, respectively.

4.2. Visual speech recognition evaluation

This section discusses the visual model epoch information, model

] - 05 18ms/step - loss: 0.2683 - accuracy: 0.9140 - val_loss: 0.2569 -

] - 05s 17ms/step - loss: 0.2551 - accuracy: 0.9052 - val_loss: 0.2800 -

] - 0s 16ms/step - loss: 0.2698 - accuracy: 0.9117 - val_loss: 0.2455 -

] - 05 17ms/step - loss: 0.2771 - accuracy: 0.8985 - val_loss: 0.2019 -

] - 0s 17ms/step - loss: 0.2879 - accuracy: 0.9038 - val_loss: 0.2432 -

] - 0s 17ms/step - loss: 0.1807 - accuracy: 0.9367 - val_loss: 0.2052 -

Fig. 5. Epochs are trained for an audio model.
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About - 0 0 0 4 0 0 0 0

Bad
Bottle 1 1
Come 0 2

Cow- 2 0 0

True label

Good 0 0 0 1
Pencil 0 0 0 0 0
Read- 0 0 0 0 0

Where 0 0 0 0 0

About Bad Bottle Come Cow Good Pencil Read Where
Predicted label

Fig. 8. Matrix of confusion for the acoustic model.

Table 1

Matrix of classification for the acoustic model.
Words Precision Recall F1-score Support
About 0.85 0.81 0.83 21
Bad 0.88 1.00 0.93 21
Bottle 1.00 0.86 0.92 21
Come 0.90 0.86 0.92 21
Cow 0.78 0.86 0.88 21
Good 0.95 0.86 0.82 21
Pencil 1.00 1.00 1.00 21
Read 1.00 0.90 0.95 21
Where 0.91 1.00 0.95 21
Accuracy - - 0.92 189
Macro average 0.92 0.92 0.92 189
Weighted average 0.92 0.92 0.92 189

precision, loss accuracy, confusion matrix, and classification details.

The visual model was trained on the English visual dataset using 60
epochs, achieving a training accuracy of 77.48% and test accuracy of
76.19%, as shown in Fig. 9. Fig. 10 illustrates the variation in training
and validation accuracy over multiple epochs for our dataset, whereas
Fig. 11 displays the fluctuation in training and validation loss with
respect to different epochs.

The number of words categorized into various types is shown in the
confusion matrix. The English datasets were trained using the confusion

Epoch 55/60

18/18 [ ]
accuracy: 0.6067

Epoch 56/60

18/18 [ ]
accuracy: 0.6984

Epoch 57/60

18/18 [ ]
accuracy: 0.7143

Epoch 58/60

18/18 [ |
accuracy: 0.6720

Epoch 59/60

18/18 [ ]
accuracy: 0.6720

Epoch 60/60

18/18 [
accuracy: 0.7619
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Fig. 11. Epoch vs. accuracy model loss curve for visual speech.

matrix of the visual model. The accuracy and misclassification of each
word are displayed in Fig. 12. The system correctly identified “About”
with 90% accuracy and misclassified “Come” and “Excellent” only 10%
of the time. “Bad” was recognized correctly 71% of the time and mis-
classified 29% of the time as “Come”, “Cow”, “Read”, and “Where”.
“Bottle” was correctly predicted 76% of the time and incorrectly identi-
fied 24% of the time as “About”, “Cow”, “Excellent”, and “Read”. “Come”
was correctly predicted 66% of the time and incorrectly identified 34% of
the time as “About”, “Bad”, “Bottle”, “Pencil”, and “Where”. “Cow” was
correctly predicted 81% of the time and incorrectly predicted 19% of the
time as “Bottle”, “Coming”, and “Good”. “Excellent” was correctly
identified 71% of the time and misclassified 29% of the time as “About”,

- 1s 42ms/step - loss: 0.7268 - accuracy: 0.7414 - val_loss: 1.1511 - val_

- Is 41ms/step - loss: 0.7306 - accuracy: 0.7416 - val_loss: 1.0958 - val_

- Is 41ms/step - loss: 0.6274 - accuracy: 0.7793 - val_loss: 1.2342 - val_

- 1s 39ms/step - loss: 0.6977 - accuracy: 0.7549 - val_loss: 1.3743 - val_

- 1s 38ms/step - loss: 0.7350 - accuracy: 0.7513 - val_loss: 1.1761 - val_

] - 1s 38ms/step - loss: 0.6593 - accuracy: 0.7748 - val_loss: 1.0564 - val_

Fig. 9. Epochs for visual model training.
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“Bottle”, “Pencil”, “Read”, or “Where”. “Pencil” was correctly identified
81% of the time and misclassified 29% of the time as “About”, “Come”,
and “Where”. “Read” was correctly predicted in the graph 86% of the
time and incorrectly classified 14% of the time. “Where” was correctly
predicted 62% of the time and misclassified 38% of the time as “Bad”,

About . 0 0 1 0 1 0 0 0

17.5
Bad- 0 . 0 1 1 0 0 3 1
15.0
Bottle 2 0 . 0 1 1 0 1 0
12,5
Come 1 2 1 . 0 0 2 0 1
B
< Cw 0 0 1 1 . 10 o0 1 10:0
2
= .
Good= 1 0 2 0 0 1 1 i 0
Pencil- 2 0 0 1 0 0 . 0 1 5.0
Read- 0 2 0 0 ] 0 0 . 0
2.5
Where- 0 1 0 2 1 0 0 4 .
About Bad Bottle Come Cow Good Pencil Read Where
Predicted label
Fig. 12. Matrix of confusion for visual speech.
Table 2
Matrix of classification for visual speech.
Words Precision Recall Fl-score Support
About 0.76 0.90 0.83 21
Bad 0.75 0.71 0.73 21
Bottle 0.80 0.86 0.78 21
Come 0.70 0.67 0.68 21
Cow 0.81 0.81 0.81 21
Good 0.83 0.71 0.77 21
Pencil 0.85 0.81 0.83 21
Read 0.67 0.86 0.75 21
Where 0.72 0.62 0.67 21
Accuracy - - 0.76 189
Macro average 0.77 0.76 0.76 189
Weighted average 0.77 0.76 0.76 189

accuracy: 0.8981
Epoch 95/100
1717 [
accuracy: 0.9029
Epoch 96/100
1717 [
accuracy: 0.9126
Epoch 97/100
1717 [
accuracy: 0.9029
Epoch 98/100
17/17 [
accuracy: 0.9126
Epoch 99/100
17/17 [
accuracy: 0.9126
Epoch 100/100
1717 [
accuracy: 0.9175

Data Science and Management 7 (2024) 25-34

“Come”, “Cow”, and “Read”. The classification information for the visual
speech dataset is shown in Table 2.

4.3. Integration of acoustic and visual speech evaluation

In this section, the results of the fusion model are discussed in terms of
the number of epochs, model accuracy, accuracy loss, confusion matrix,
and classification matrix. English datasets were used to train the audio-
visual speech recognition model for 100 epochs. The fusion model ach-
ieved a training accuracy of 94.67% and test accuracy of 91.75% for the
English dataset, as shown in Fig. 13. For our dataset, Fig. 14 shows the
variation in training and validation accuracies over different epochs. The
loss accuracy of the fusion model, shown through the training and vali-
dation losses, is shown in Fig. 15.

The number of words categorized into various types is shown in the
confusion matrix. The English datasets were trained using the confusion
matrix of the audiovisual model. The accuracy and misclassification of each
word are shown in Fig. 16. The system correctly identified “About” with
90% accuracy and misclassified “Come” and “Cow” only 10% of the time.
“Bad” was correctly predicted 100% of the time without error. “Bottle” was
correctly identified 86% of the time and misclassified 14% of the time.
“Come” was recognized correctly 95% of the time and misclassified 5% of
the time. Five-word recognition rates for “Cow”, “About”, and “Excellent”
showed a 90% accuracy and 10% misclassification level. “Good” was pre-
dicted accurately 100% of the time without error. “Pencil” was correctly
classified 90% of the time and incorrectly classified 10% of the time as
“Bottle” or “Read”. “Read” was correctly predicted 95% of the time and
incorrectly predicted 5% of the time as “Where”. “Where” was predicted
accurately 90% of the time and misclassified 10% of the time as “Read”. The
categorization report for the audiovisual speech database is presented in
Table 3. The perceived precision, recall, accuracy, and Fl-score of the
proposed method were 92%, 92%, 92%, and 92%, respectively. Table 4
compares the results of visual-only speech recognition with the suggested
outcome, and audiovisual speech recognition with the suggested outcome.

4.4. Management implications and discussion

Understanding and sensing the meanings behind what people
communicate by simply observing visuals without audio is quite com-
plex. Deep learning models are used to predict what someone is saying
using visual information, primarily lip movements. Voice biometric ap-
plications, for example, are often used by office and university managers

]- 1s 67ms/step - loss: 0.1211 - accuracy: 0.9520 - val_loss: 0.4226 - val

]- 1s 88ms/step - loss: 0.1787 - accuracy: 0.9386 - val_loss: 0.3460 - val_

] - 25 95ms/step - loss: 0.1553 - accuracy: 0.9438 - val_loss: 0.3529 - val_

] - 25 92ms/step - loss: 0.1661 - accuracy: 0.9470 - val_loss: 0.3456 - val_

]1- 2s 91ms/step - loss: 0.1960 - accuracy: 0.9422 - val_loss: 0.3751 - val_

] - 2s 93ms/step - loss: 0.2047 - accuracy: 0.9467 - val_loss: 0.3180 - val_

Fig. 13. Epochs for audiovisual speech model training.
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Fig. 15. Epoch vs. accuracy audiovisual speech model loss curve.

to verify individuals. Physically challenged people, such as those with
audio and verbal speech impairments, can use such applications to
manage conversations without the involvement of audio language. The

About . 0 0 1 il 0 0 0 0 20.0
Bad- 0 . 0 0 0 0 0 0 0 17.5
Bottle: 0 0 . I o o o0 o 150
_ Come- 0 1 0 0 0 0 0 0 125
(53
=
b Cow 1 0 0 0 1l 0 0 0 60
=
E_4
Good- 0 O 0 0 0 0 0 0
75
Pencil- 0 0 1 0 0 0 . 1 0
5.0

Read- 0 0 0 0 0

25
Where- 0 0 0 0 0 0 0 2 .
. . . . . 0
About Bad Bottle Come Cow Good Pencil Read Where
Predicted label
Fig. 16. Confusing speech for audiovisual.
Table 3
The audiovisual speech classification matrix.

Words Precision Recall F1-score Support
About 0.85 0.81 0.83 21
Bad 0.88 1.00 0.93 21
Bottle 1.00 0.86 0.92 21
Come 0.90 0.86 0.88 21
Cow 0.78 0.86 0.82 21
Good 0.95 0.95 0.95 21
Pencil 1.00 1.00 1.00 21
Read 1.00 0.90 0.95 21
Where 0.91 1.00 0.95 21
Accuracy - - 0.92 189
Macro average 0.92 0.92 0.92 189
Weighted average 0.92 0.92 0.92 189
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Table 4
Comparison of the proposed method with current audiovisual and visual
methods for speech recognition.

Method Dataset Correctness Word
(%) error
rate (%)

DWT/LDA (Li et al., 2019) [v] Custom AAVC 68.04 31.96

VGG16 (Matinez et al., 2020) [v] Customized 75 25

PCA (Sooraj et al., 2020) [v] Ryerson 75 25
Multimeida Lab

LSTM (Sooraj et al., 2020) [v] Customized 75 25

LSTM [Proposed] Customized 76.19 25

Decision Fusion (Li et al., 2019) Customized AAVC 76.79 23.21

[AV]

PCA LDA (Sooraj et al., 2020) Ryerson 82.5 17.5
Multimeida Lab

DCNN (Sooraj et al., 2020) Customized 91 9

DCNN [Recommended] Customized 91.74 8

audiovisual speech recognition method proposed in this study involves a
new dataset to address the computational challenges of CNNs and deep
learning.

5. Conclusion and future scope

The audiovisual speech recognition method proposed here involves a
new dataset and a feed-forward neural network that addresses the
computational challenges of CNNs and deep learning. The architecture
includes a 1D CNN model for audio, an LSTM model for visual, and a
DCNN for integration. The authors achieved a training accuracy of
94.67% and testing accuracy of 91.75% using a custom dataset. The re-
sults demonstrate that combining audio and visual inputs yields the best
performance, as evidenced by the superior performance of the proposed
method compared with existing methods.

The performance of audiovisual voice recognition for English-
language words was examined and the results were compared with
those of earlier approaches and implementations. For subsequent
research, the authors suggest that employing additional datasets to train
various deep learning algorithms and building a dataset from perspec-
tives other than looking directly at the speaker, as well as working with
various machine learning and deep learning algorithms for better results.
In the future, researchers will create datasets in noisier environments or
add artificial noise and train the system using different machine learning
and deep learning algorithms. Researchers can implement this in the real
world in an unsupervised manner and develop a portable device using a
microcontroller and microprocessors.
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