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Feature selection (FS) is a data preprocessing step in machine learning (ML) that selects a subset of relevant and
informative features from a large feature pool. FS helps ML models improve their predictive accuracy at lower
computational costs. Moreover, FS can handle the model overfitting problem on a high-dimensional dataset. A
major problem with the filter and wrapper FS methods is that they consume a significant amount of time during
FS on high-dimensional datasets. The proposed “HDFS(PSO-MI): hybrid distribute feature selection using particle
swarm optimization-mutual information (PSO-MI)”, is a PSO-based hybrid method that can overcome the prob-
lem mentioned above. This method hybridizes the filter and wrapper techniques in a distributed manner. A new
combiner is also introduced to merge the effective features selected from multiple data distributions. The effec-
tiveness of the proposed HDFS(PSO-MI) method is evaluated using five ML classifiers, i.e., logistic regression (LR),
k-NN, support vector machine (SVM), decision tree (DT), and random forest (RF), on various datasets in terms of
accuracy and Matthew’s correlation coefficient (MCC). From the experimental analysis, we observed that
HDFS(PSO-MI) method yielded more than 98%, 95%, 92%, 90%, and 85% accuracy for the unbalanced, kidney
disease, emotions, wafer manufacturing, and breast cancer datasets, respectively. Our method shows promising
results comapred to other methods, such as mutual information, gain ratio, Spearman correlation, analysis of
variance (ANOVA), Pearson correlation, and an ensemble feature selection with ranking method (EFSRank).

1. Introduction of each feature. It computes a score and ranks each feature based on the

calculated score. Most filter-based FS methods employ a greedy approach

Feature selection (FS) is an integral preprocessing step of machine
learning (ML) that evaluates the original feature set to find the most
informative and nonredundant features. The FS method evaluates fea-
tures by using a selection criterion or objective function to select the most
informative features (Li et al., 2017). Owing to the tremendous increase
in data volume and complexity, the FS is considered an important ML
step for dimensionality reduction. The primary goal of FS is to obtain a
subset of relevant and informative features that can enhance the per-
formance of an ML model, reduce time and space complexity, and pre-
vent model overfitting (Venkatesh and Anuradha, 2019). Based on their
selection mechanism, FS methods can be classified into four types: filters,
wrappers, embeddings, and hybrids (Hoque et al., 2014). The filter
method uses a feature evaluation measure to determine the effectiveness
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to iteratively determine the best features. To evaluate high-dimensional
data, the filter method is considered cost-effective in terms of time. In
the wrapper, an explicitly used ML method functions as an evaluator to
validate all possible subsets of features generated from the original
feature group. The wrapper method uses an exhaustive search to assess
all possible subsets of features using a learning algorithm and selects the
subset that gives the best performance. Because the wrapper method uses
an exhaustive search to evaluate all possible subsets of the original
feature group, its computational time is very long compared to that of the
filter method. However, wrapper methods performed better than filter
methods. An embedded method considers FS as an integral part of the
training process. Features are selected when training a learning model.
The hybrid method combines any of the three previously mentioned
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methods. Hybrid methods are widely used in many ML applications
because of their excellent discriminative behavior in pattern recognition
and data analysis. In this paper, we discuss our proposed FS method
called the “hybrid distributed feature selection using particle swarm
optimization-mutual information (PSO-MI)” abbreviated as
HDFS(PSO-MI), to select the most informative features from a large
feature pool.

Feature selection plays a significant role in selecting informative,
relevant, and non-redundant features from a large feature space during
data preprocessing. After a comprehensive study of existing feature se-
lection techniques, we observed that many wrapper-based FS methods
ignore feature redundancy, and filter-based methods select features with
some redundancy among the selected features. Moreover, the computa-
tional cost of wrapper techniques is high, and the selection of an optimal
subset of features from a high-dimensional dataset is a major problem for
ML researchers. Among existing FS methods, incorporating a single
objective function into the standalone FS method does not yield satis-
factory results for high-dimensional data. To overcome these problems,
we developed a hybrid feature-selection method combining the concepts
of PSO optimization as well as MI. The PSO optimization is applied to a
distributed dataset to select optimal features from each distribution and
then combine the solutions of all distributions using MI, which yields the
best subset of features. The proposed hybrid model integrates both the
filter and wrapper methods. As the wrapper method consumes a signif-
icant amount of time, we applied it in a distributed manner. The wrapper
methods are executed in parallel with multiple objective functions during
the feature subset evaluation. This step significantly reduces the
computational cost. Moreover, for each partition of the original data, the
proposed method employs a filter FS using MI and combines the features
from each partition to obtain the best set of optimal features. The main
advantage of the proposed hybrid model is that it reduces the compu-
tational cost of feature selection by the parallel execution of the method
on multiple cores.

The major problems of FS selection in high-dimensional datasets are
the computational cost and performance. For a given dataset D with n
numbers of features, an FS method needs to select a subset of features, m,
such that m < n. The subset of m features should yield better perfor-
mance with reduced computational cost during prediction. This method
should work on distributed datasets to select the best feature subset using
PSO and MI.

The main contributions of this study are as follows:

e We developed an effective hybrid feature selection method called
HDFS(PSO-MI) using PSO-MIL.

e A new objective function is defined to help the PSO optimization
algorithm.

e A new combiner method is proposed to combine the subset of features
selected from each dataset distribution.

e The proposed hybrid feature selection method is evaluated on high-
dimensional datasets.

e A parallel programming is applied to execute the method on multiple
cores.

e The effectiveness of the HDFS(PSO-MI) is compared with some
existing feature selection methods.

The remainder of this paper is organized as follows. Related studies
and existing FS methods are discussed in Section 2. The PSO algorithm is
described in Section 3. The proposed HDFS(PSO-MI) method and the
corresponding algorithm with a working example are described in Sec-
tion 4. Experimental results and analyses are presented in Section 5.
Finally, Section 6 makes the conclusion and suggests the future work.

2. Related work

In the literature, we found several articles on FS (Baruah et al., 2020;
Chandrashekar and Sahin, 2014; Kumar and Minz, 2014; Li et al., 2017;
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Zhu et al., 2023). Most FS methods follow the filter approach and
incorporate information-theoretic measures as feature evaluators during
the feature selection (Hoque et al., 2016, 2018). In addition,
evolutionary-based wrapper FS methods have shown excellent results for
high-dimensional datasets (Moslehi and Haeri, 2020; Wang and Huang,
2009). To tackle the unmanageable challenges of computational costs in
mining high-dimensional data, an effective FS method using PSO is
developed by Fong et al. (2015). In high-dimensional datasets, most FS
methods have intractable computational demands because the size of the
search space to find the best optimal subset is exponential. Therefore, the
authors developed a lightweight FS method incorporating accelerated
PSO, which yielded an enhanced performance with reduced computa-
tional cost. This method selects the most informative features on big data
in an incremental manner, and the selected subsets of features are eval-
uated on multiple test case sets on big datasets. Researchers have
developed variants of the PSO method for feature selection because
evolutionary computation approaches have been found to be effective in
exploring the confounding effects of feature interactions. A modified
binary PSO-based FS method was proposed by Vieira et al. (2013) and
used for mortality prediction in patients with sepsis. The enhanced bi-
nary particle swarm optimization (BPSO) method optimizes the SVM
kernel parameters to manage the premature convergence of the PSO. The
BPSO-based FS method works as a wrapper method and evaluates feature
subsets using an SVM classifier. The selected subset of features yielded a
high accuracy in mortality prediction in patients with sepsis. The PSO
technique is combined with other methods, such as genetic algorithms,
rough-set theory, and information gain, to develop hybrid FS methods, as
PSO-based hybrid methods show promising results for FS. An effective
hybrid FS method was proposed by Li et al. (2023) that combines three
techniques, i.e., GA-Kmeans, GA-PSO-K-means, and harmony-K-means.
This method was applied to enhance the accuracy of diabetes diagnosis
applications, achieving an accuracy of 91.65%. The subset of features
selected from the diabetic dataset was evaluated using a metaheuristic
harmony search, and the performance was improved using the K-means
clustering algorithm.

As reported by Moradi and Gholampour (2016), most existing
PSO-based FS methods do not consider the correlation or feature-feature
interactions during the search for the optimal features. As a result, the
probability of selecting redundant features is high, which affects per-
formance. To overcome this problem, Moradi and Gholampour (2016)
developed a novel hybrid PSO-FS method called HPSO-LS, which in-
corporates a new local search strategy. This method uses a
correlation-based search strategy that guides the PSO to identify
less-correlated features. This method selects less correlated features,
known as dissimilar features, with a higher probability than more
correlated features. An FS is an optimization problem that considers
either single or multiple objectives for feature subset evaluation. If
multiple objectives are used during feature selection, this method re-
quires a significant amount of processing time. To address this issue,
Bansal et al. (2022) developed a hybrid method with multiobjective
optimization using PSO. This method, known as mRMR-PSO, removes
redundant and irrelevant features from sign language data. Initially, the
method applies a histogram of oriented gradient (HOG) technique for
feature extraction and fits the SVM classifier into the PSO. We performed
an experimental comparison of the proposed mRMR-PSO with the HOG
(without FS), PSO, and mRMR in terms of accuracy and computation
time.

Another challenging problem of FS is inadequate handling of very
high-dimensional data with a smaller number of samples, and most ML
methods face the model overfitting problem on those datasets. In such a
situation, neither the filter nor wrapper approach can effectively select
the best feature subset. In addition, feature subset instability is a common
problem in small sample size data, which has not been properly
addressed by many existing FS methods (Brahim and Limam, 2016).
Therefore, Brahim and Limam (2016) developed an effective hybrid FS
method that incorporated a cooperative subset search technique for



K. Robindro et al.

instance learning. They restructured the problem of a small sample size
into a filter-based FS tool that can select only a few subsets of informative
features. They used cancer datasets to establish the efficacy of their
method and proved that their method selects the most stable feature
subsets that provide high detection accuracy.

From the above discussion, it is very clear that FS is a generic data pre-
processing step of ML that selects the most informative features useful for
the respective learning models. Most FS methods employ a feature
evaluator or objective function to assess the importance and relevance of
features in an optimized manner. As discussed above, many FS methods
have been developed to select features from diverse applications such as
network data, gene expression, language, disease, and chemical data. We
observed that hybrid FS methods are widely used on high-dimensional
datasets owing to their calibration in searching for the best feature set
with reduced computational cost. Moreover, evolution-based hybrid
feature selection methods have gained popularity for providing the best
performance by selecting a stable feature set. Considering all the benefits
of the hybrid FS methods, we developed the proposed HDFS(PSO-MI)
method, which works in a distributed manner with multiple fitness
functions operated on multiple partitions of the original dataset.

3. PSO

PSO is a popular optimization method developed by Eberhart and
Kennedy (1995) that uses a common metaheuristics searching algorithm
for optimization. The method was developed based on inspiration from
the natural process of social behavior and the dynamic movement of
animals. In PSO, solutions known as a group of random particles are
initialized first, and the particles are updated iteratively to search for the
optimal solution. The position vector and velocity are updated during the
optimal search process. The position vector is known as “pbest” or local
best for the individual particle’s best solution (fitness) so far. The next
parameter is “gbest” which represents the best position achieved so far
among all the particles. The best position is set as the current global
position of the particles, called gbest. PSO uses 1 and 2 to update the
positions and velocities of the particles, respectively.

(k+1)
i

= oV 4 Cyry(pbestt — xF) 4 Cyry (ghestt — ¥) 1)

vV,

D) ZXerkaH) @

The velocity and current position at the k™ iteration are denoted by vk
and xﬁ‘, respectively. PSO uses two random variables, r1, r, where Cy, Co
are positive constants. The inertia weight, represented by w, is used to
balance the tradeoff between exploration and exploitation. The different
parameters and their meaning used in PSO are listed in Table 1. v  is
the upper bound of the velocity in all dimensions, and controls the par-
ticle rush movement during the search. PSO techniques have been suc-
cessfully used in various applications such as data mining, design and
modeling, prediction and forecasting, and networking. Although PSO
was developed to solve unconstrained single-objective problems, people
use PSO variants to solve constrained optimization problems. Our

Table 1
Particle swarm optimization (PSO) parameters and objective setting on all
datasets of experimental.

Parameter name Parameter value/meaning

PSO learning factors (Cy, C3) 2,2)

PSO inertia weight (@) (0.9)

Maximum iteration 100

A 0.88

Acc Accuracy

Rel_avg Average of relevant
Red_avg Average of redundancy

SF Number of selected features
TF Total number of features
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proposed method uses PSO to determine the relevant subset of features
using three objective functions. The equations for the objective functions
are given by Egs. (3)-(5).

3.1. Objective functions used in PSO for feature selection

As previously mentioned, a single objective function may be biased in
selecting the best subset of features from a distribution. Hence, we used
multiple objective functions for an effective analysis of features in
different data distributions. To define the objective function, we used the
accuracy value obtained from the SVM classifier using the corresponding
features the PSO swarm considers. This accuracy value plays a significant
role in selecting the best subset of features, along with other parameters
such as relevance (Rel), redundancy (red) of the features, and the ratio
between the number of selected features and the total number of features.
The major disadvantage of applying multiple objective functions in HDFS
(PSO-MI) is that it takes an exponential time on large datasets to evaluate
features with the three objective functions incorporated into the PSO.

F
Objectivel (obj,) = a x (1 —acc) + (1 —a)* <1 - %) 3)
Lo . SF
Objective2(obj,) = acc X Rely,, — (1 —acc) X Red,,, TF 4)
Lo . SF
Objective3(objs;) = acc + (1 — acc) X TF X (Rel g — Red,yg) 5)

3.2. Parameter settings in PSO

The PSO algorithm uses several parameters during execution. In our
experimental analysis, we initially set the parameters described by Shi
and Eberhart (1998) and executed the PSO method for our problem.
Next, we experimentally tuned the parameters and selected those that fit
the best. The swarm size is an important parameter that influences PSO in
determining the optimal solution. If we set a large swarm size, the PSO
complexity for finding the best solution from a large search space is high.
We found a general heuristic for swarm size in the literature (Moradi and
Gholampour, 2016; Zhang et al., 2016). Similarly, the number of itera-
tions was set based on the specific problem. Significantly fewer iterations
led to premature termination without obtaining the best solution, and a
large number of iterations required computation time to converge. The
PSO learning factors C; and C; are set empirically, and incorrect values of
C; and C» may exhibit cyclic behavior in the PSO. The inertia weight @
should always be less than one to handle divergence or explosion. The
parameters and their corresponding values are shown in Table 1.

3.3. Complexity analysis of PSO

The computational time of the PSO algorithm depends on multiple
parameters, particularly the swarm size, number of iterations, and ac-
celeration coefficients. If the swarm size is y, the number of iterations is n,
and the dimension of each particle is d, then for d dimension, the PSO
takes O(d x v) and O(d x p) times to update the particle’s velocity and
positions, respectively. Because the position and velocity are updated for
each particle until they converge or the maximum number of iterations is
reached, the total time complexity of PSO is O(n x u x O(d x v) + O(d x
P), excluding the swarm initialization time.

4. Proposed method

This section discusses the proposed HDFS(PSO-MI) method in detail.
The method consists of two phases: (i) PSO feature subset selection and
(ii) a combination of feature subsets using MI. In the first phase, we
divided the original dataset into k random partitions. We applied the PSO
method to each partition as a wrapper to determine the best subset of
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features. PSO uses a feature subset evaluation function, known as an
objective function. In our proposed method, instead of applying a single
objective function, we apply three different objective functions to over-
come the possible biases of a single objective function in any distribution
of data objects. The outcome of the PSO algorithm is a subset of the
relevant features for a particular partition, d;. This method generates
three subsets of selected features for each partition. The UNION opera-
tion combines features selected from the three subsets. This process ex-
ecutes all partitions of the datasets. If there are k partitions, the method
generates k feature subsets. In the next phase, the proposed method
combines the three subsets of features and ranks the individual features
at the time of combination. This method uses the MI measure to compute
the rank of each feature over the entire dataset. Finally, a threshold was
calculated from the MI scores of the combined features, and the method
selected features with MI scores greater than the threshold value. These
are considered the best subsets of features selected by the proposed
HDFS(PSO-MI) method. Because the proposed method applies PSO for
the initial feature subset selection in a distributed manner, all feature
subsets are combined using the MI score. Hence, our method is called
HDFS(PSO-MI), i.e., hybrid distributed feature selection using PSO-MIL.
The workflow of the proposed method is shown in Fig. 1. Next, the MI
approaches used in the proposed method are discussed (Fig. 2).

The primary learning factors of PSO, such as social learning factor
(C1) and cognitive learning factor (Cy), are set as 2. Harb and Desuky
(2014) suggested that the values of C; and C, can take any random value,
but the added values of C; and C3 should not exceed 4. The maximum
number of iterations was set to 100, and the fitness function or objective
of the PSO algorithm was set as objj, objs, objs. After initializing the
required parameters, the features of the distributed data were

Dataset
Distribute the data into m
distributions
d, d, d, d,

Select subset of features by using PSO optimizer

1% objective 2" objective 3 objective

Combine the PSO solutions of m distributions

Select top features based on threshold

. values

Optimal subset

Fig. 1. Flowchart of the proposed method.
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Distribution of data
[dy, d, ..., d,]

m

I Initialize PSO parametersl

|chrcscnt features in PSO pzuticlcs|

| Train SVM classification ‘

|

Calculate objective function

[oby,, 0bj,, 0bj;]

l |

Update the velocity |
l t=t+1

‘ Update the position |

No
¥
Is stopping criteria met —
Yes
* A 4 ‘
Selected Selected Selected
feature from feature from feature from
obj, obj, oby,

Union of selected features of three
objectives

Fig. 2. Process of particle swarm optimization (PSO) with three objec-
tive functions.

represented as PSO particles. The objective function obj; is evaluated by
setting the initial velocity of each particle to zero and iteration tto 0 + 1.
Then, we find the personal or local best for each particle and the global
best for the swarm. Now, consider the random numbers r and r5 in the
range (0,1), and update each particle’s velocity and position using Egs.
(1) and (2). Next, we calculate the objective function obj; for each dis-
tribution and check whether the stopping criteria are satisfied. Other-
wise, the number of iterations is increased, and the same process is
repeated until the stopping criteria are satisfied. The same process of PSO
is performed for the other two objective functions, objs and objs, using
the same data distribution. After executing all the objective functions, the
UNION operation is performed on the three selected subsets of features
generated by the three objective functions to generate one subset of
features for evaluation.

The symbols used to describe the proposed algorithm are listed in
Table 2.

The algorithm begins its execution on dataset D with n features:
Initially, we divide the entire dataset into m distributions; subsequently,
for each distribution d; € D.

o Initialize the PSO parameters and defined the objective objs;

o Compute the binary PSO and the union of Pso_SF where obj; € obj;

e and compute the correlation between feature f; and class C using MI
where f; € Union_Pso_SF.

Then, we combine the MI score for each feature f; € MI score for all
distributions di, ds, ..., dy. The threshold value was set to half the
maximum score. Finally, features with a value greater than or equal to
the threshold value are selected.
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Table 2 Table 3
Symbols used and their description. Example dataset.
Symbols Meaning Number fi f2 f3 fa fs fe f7 C
D Dataset 0 4 0 4 4 0 1 2 1
N Number of features in dataset D 1 1 2 3 0 1 3 3 1
C Class label 2 4 0 2 0 1 3 3 1
M Number of distribution to be split 3 3 0 4 5 1 3 2 1
d; i" distribution 4 1 2 4 5 2 2 3 1
MI Mutual information 5 1 2 3 4 2 2 3 1
Binary PSO Binary particle swarm optimization (BPSO) 6 4 0 1 0 1 2 3 1
Pso_SF Feature subset generated by BPSO 7 1 2 7 0 1 2 2 1
U UNION 8 2 2 8 0 1 2 2 1
objy, Variable that contains all three objectives function 9 2 2 1 0 1 1 3 0
obj, The first objective of PSO 10 4 0 5 0 1 1 3 0
obj, The second objective of PSO 11 1 2 3 4 2 2 2 0
objz The third objective of PSO 12 2 2 5 0 1 1 3 0
TH Threshold value 13 2 2 3 0 1 1 5 0
14 2 2 1 0 1 2 3 0
15 4 0 5 0 1 3 1 0
4.1. Proposed algorithm 16 2 2 3 0 1 2 2 0
17 3 0 3 0 1 3 3 0

The steps of the proposed HDFS(PSO-MI) method are presented in
Algorithm 1. To understand the algorithm better, we use the various
symbols shown in Table 2 with their meanings. The algorithm consists of
two phases: PSO feature selection and feature ranking using MI. The steps
in both phases are presented using the same algorithm.

Algorithm 1: HDES(PSO-MI) Feature Selection
Input: Dataset D with n features, class label C, and number of distribution .
Output: F’: The subset of k optimal features.

foreach d; € D do
Initialize Binary_PSO parameters;
0bj 7, = (0bjy. 0bjy, 0bj3):
foreach objective function obj; € obj fn do

selected feature Pso_SF = Binary_PSO(d;,C);
Union_Pso_SF = U?_ (Pso_SF);
end
foreach feature f; € Union_Pso_SF do
‘ calculate MI_Score = MI(f;,C);

end

end

foreach feature f; € M1_Score do

‘ calculate Score = combiner(M I_Score);

end

TH = %max(Smre):

foreach objective feature f; € MI_Score do
if M1_Score(f;) > TH then

‘ Select /'j and put it into the set F';

end

end

return features set F’;

4.2. Working example

To better understand the proposed method, we discuss a working
example. Let us consider a label dataset D with features F = (fi, fs, f3, f4,
fs, fe, f7) and a class label C as listed in Table 3. First, we split the dataset
into three categories: distribution 1, distribution 2, and distribution 3, as
listed in Table 4. For each distribution, we apply the basic binary PSO
algorithm with three different objective functions to select the initial
subset of features from the distribution. The accuracy obtained from the
SVM classifier is used to define the objective functions. The three
objective functions select three subsets from each distribution, which is
combined using the UNION operator to generate a subset of the selected
features. This process is repeated for the other two distributions
(Table 5).

As shown in Table 4, dataset D is partitioned into three distributions,
each of which contains six rows as instances, seven columns as features,
and C is a label.

This method applies PSO to the first distribution and selects three
feature subsets using obji, objs, and objs. Using the UNION operation, the
three subsets are merged to obtain a single feature set.

Definition 1. (relevant feature) A feature is called a relevant feature to
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the target variable if it can discriminate samples correctly w.r.t the given
feature. The relevance of individual features can be evaluated using
mathematical, statistical, and information-theoretical measures.

Definition 2. (optimal feature set) A subset of feature, say S = {f1, fo, ---,
fi} is called optimal if the performance measured on S by an ML algo-
rithm is always higher than any other subset of features say S'.

Proposition 1. The subset of features selected by HDFS(PSO-MI) is
relevant and optimal

Proof. HDFS(PSO-MI) first evaluates possible subsets of features using
PSO techniques, and then selects the best subset, say S = {f1, f2, -, fk}-
The method evaluates each feature f; € S in terms of the MI between the
feature f; and the target variable C and chooses the features highly
relevant to C. Hence, HDFS(PSO-MI) always selects the relevant and
optimal values.

5. Experimental analysis

We implemented our proposed HDFS(PSO-MI) hybrid feature selec-
tion method on a computer with 8 GB primary memory, i5 1 1" Gen intel
processor, and a 64-bit Windows 11 Operating System using the Python
programming language in a Jupiter notebook. During the implementa-
tion, we used various Python packages such as NumPy, Pandas, sci-kit
learn, and Keras.

5.1. Datasets used

Fifteen datasets were used to validate the effectiveness of the pro-
posed method. The datasets are summarized in Table 6. Most of the
datasets contained both numerical and categorical features without
missing values. All the datasets were imbalanced in terms of class
distributions.

5.2. Performance measures used

We used various performance analysis measures, as shown in Table 7
to effectively analyze the proposed method. The accuracy and Mathew’s
correlation coefficients were used to analyze and compare our method
with other competing methods.

5.3. Parallel execution of the proposed HDFS(PSO-MI) method

We evaluated the HDFS(PSO-MI) method using five large datasets
with over 1,000 features. The proposed method takes an exponential
amount of time to select an optimal subset of features because the
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Table 4

Distribution of the example dataset.

1st distribution
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dimensions of the dataset are very high, and the PSO method executes
multiple objective functions. Because of the exponential execution time,
the proposed method may fail to operate in many applications of ML
methods in real-time decision-making processes. Therefore, to improve

c .
fi f2 fa f1 fs fo f the execution performance of the HDFS(PSO-MI) method, we used par-
‘1‘ g ‘11 g ; 5 i 1 allel programming in a high-performance computing environment. We
1 5 3 o 1 3 3 1 applied the parallel computing concept to reduce the computations using
4 0 5 0 1 3 1 0 Python’s multiprocessing module. Initially, our proposed algorithm
2 2 1 0 1 1 3 0 could take any number of distributions as a parameter; however, here, we
3 0 4 5 1 3 2 1 consider only two because we have limited processor cores. The flow of
2nd distribution the execution process is shown in Fig. 3. Using the core of the processor,
N 5 3 Py 1 2 5 0 the process of executing the algorithm begins, and waits until the entire
2 2 5 0 1 1 3 0 process is completed. After dividing the entire input dataset into two
1 2 3 4 2 2 2 0 distributions, another processor core executes each distribution. For each
1 2 7 0 1 2 2 1 distribution, one processor core began the execution process and waited
4 0 5 0 1 1 3 0 i . leted lied th
4 0 4 4 0 1 5 1 until the entire process was completed. Because we applied three
objective functions to each distribution, we used the core of one pro-
3rd distribution cessor to compute each objective function. We adopted the shared
1 2 3 4 2 2 3 1 memory concept to group the resulting outputs. The results of each
2 2 3 0 1 1 5 0 objective function were grouped to provide one result for the distribu-
3 0 3 0 1 3 3 0 . I . .
4 0 5 o 1 3 3 1 tion. Subsequently, the results of each distribution were combined, and
9 9 1 0 1 9 3 0 the feature set was selected accordingly. During the program execution,
2 2 8 0 1 2 2 1 we used nine processor cores.
5.4. List of 10 high-ranked features selected by our proposed HDFS(PSO-
Table 5 MI) method
Selected features using particle swarm optimization (PSO).
Distribution  Objective Feature mask Features UNION The proposed HDFS(PSO-MI) method ranks all features in descending
order of their scores and selects only the high-ranked features. Next, the
1 1 111111 (Afffffe)  Afffsfef) lootod £ L o] v elassify (he L
9 11000001 [fife] selected features are fed into the model to classify the instances. It is
3 [1000001] fifr important to know the names of the features selected as the best set from
5 1 Ho11111] Ffoffofofo] Ffofofofofo] a single dataset. In Table 8, we list only the first 1.0 high-ranked features
2 [1010100] [fifafs] from all selected features, owing to space constraints. For some datasets,
3 [0010001] [faf7] the method selected fewer than 10 features.
3 1 [1111111] ifofofafsfefr]  fifofafafefef7]
2 [1010011] ifafef7] Table 7
3 [1010010] [f]f3f6 1 Performance measures.
Computed mutual information (MI) for each feature Symbol & metrics Meaning
Feature Distribution, Distribution, Distributions Total MI
TP Number of actual positive instances
fi 0.58 0.25 0.54 1.37 N Number of actual negative instances
f2 0.0 0.0 0.0 0.0 FP Number of false positive instances instead of actual negative
fs 0.58 0.91 0.54 20.3 FN Number of false negative instances instead of actual positive
fa 0.25 0.04 0.19 0.48 Accuracy N B (TP + TN)
fs 0.10 0.37 0.19 0.66 ceuracy = (TP +FP + TN + FN)
fs 0.45 0.22 0.20 0.87 MCC - (IN x TP — FN x FP)
f 0.37 025 033 095 = /(TP + FP)(TP + FN)(IN + FP)(IN + FN))
Table 6
Dataset description.
Dataset Data type Number of class labels Number of instances Number of attributes Number of selected attributes
Fetal heath Real 3 2,126 22 11
Kidney disease Categorical, real, integer 3 400 26 12
ECG Integer, real 2 1,000 28 3
Hypothyroid Categorical 2 3,772 30 2
Unbalanced Categorical, real, integer 2 856 33 27
MOFP Categorical, real, integer 2 61 197 156
Bioassay Categorical, real, integer 2 827 915 27
Parkinson disease Integer, real 2 756 754 687
Cancer normal gene Real 2 133 1,928 850
Colon cancer gene Categorical, real, integer 2 62 2,002 1,830
Wafer manufacturing Integer, real 2 1,763 1,159 3
Breast cancer Categorical, real, integer 2 705 1,941 754
Emotions Categorical, real 3 2,132 2,549 2,056
Malaria Categorical, integer 2 5,512 2,501 2,072
Skin cancer Integer 7 10,015 2,353 1,326
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5.5. Result analysis on big datasets
é oy In our experimental analysis, we used five large datasets: wafer
% E 3 Po® e o go we manufacturing, malaria, breast cancer, skin cancer, and emotion. The
=8 | S8s S S S8 S8 description of the datasets is given in Table 6. To better generalize the
performance of the HDFS(PSO-MI) method, we statistically validated it
- o, 8 8 § using a t-test. We compared the statistical significance of the HDFS(PSO-
:: - Cga ® g g g MI) method with those of other competing FS methods by considering the
ks s .5 8 PR p-values. If the p-value of a pair of FS methods using a classifier is greater
than 0.05, there are no significant differences in the performances of the
© o two FS methods. Otherwise, the methods used may have differed
o Ho o % ‘% 2‘ § significantly (Tables 9-12). In addition to the p-value, we validated and
'E o B 3,§ = ES El ?g analyzed the proposed HDFS(PSO-MI) using the accuracy and MCC
=1 2,290 . SETAR scores on five high-dimensional datasets, as shown in Figs. S1-S13.
am T g g% 5.6. Statistical analysis of the proposed method using p-values
z 252s EI.2E
5 B . § :: 88 8‘1 g E. £ 5 We applied a t-test to validate the statistical significance of the pro-
posed HDFS(PSO-MI) method and compared it with other FS methods.
E § 2 From the computed p-values, we observed that the proposed method
£ & g ® behaved similarly to the FS methods. As shown in Table 9, the p-value
o §° E. E « E ‘g E 2 between the proposed method and EFS_Rank method is smaller than the
§ g = . Ex é . a3 § % threshold of 0.05. Hence, the t-test reflects the significant differences
between the two classifiers evaluated using the k-NN classifier. Similarly,
. there was a significant difference between HDFS(PSO-MI) and ANOVA
° g B i -2 @ § using the random forest classifier. As shown in Table 10, on the breast
< g f«g E' 2{ 9 §| g 2 <3 cancer dataset, the proposed HDFS(PSO-MI) shows results similar to
E|2E ,=z58 BEREA those of other FS methods, as the p-values of all competing methods are
greater than 0.05. Hence, there were no significant differences between
Yo the FS methods. On the emotion dataset, the proposed method yielded a
" g) g E. © Y ;‘ § § p-value of 1 when compared with other FS methods, as shown in
?, g g . &S § & B g‘ :g Table 11. Therefore, there was no significant difference between HDFS-
€le” &.,5%0 &8 A& MI and other competing FS methods. Finally, Table 12 shows all p-
values greater than 0.05, which indicates that there were no significant
g B 8 differences between HDFS-MI and other FS methods for the skin cancer
% ‘:g - 2 dataset.
<8 o e 58
:‘: g EI :Z:' § EI g %‘ % 5.7. Result analysis on big datasets in terms of accuracy
g|€8 ¢.2 B g8 A%
From the experimental results on HDFS(PSO-MI) on five real big
datasets, we observed that on malaria, skin cancer, breast cancer, and
7§ emotion datasets, the proposed method gives very good results using all
o g the classifiers as shown in Fig. S6-S12. However, the proposed method
'E. - 0 shows a slightly lower accuracy than other methods using DT, SVM, and
5, E. _ ;'. 5 k-NN classifiers, as shown in Fig. S4.
U I ! (=1
~ ¥e= Q - 38 28
E 2: :g g c £ o E % E g E')% 5.8. Result analysis
21£|288,%8 5 § g8 44
% - We used the accuracy and MCC measures to compare the HDFS(PSO-
E 8 MI) method with six other FS methods. The performance metrics were
;: ;' g s - computed by applying five machine learning classifiers, i.e., LR, k-NN,
E’ g' 3;“ :: g: . SVM, DT, and RF. .
g E N Tgl g z o, o 2 g § The HDFS(PSO-MI) method wa}s con?pared with other FS methods,
g fl=|zs¢s . EI £ E | g o5 such as the ensemble feature selection with ranking method (EFS-Rank),
Sl5|& g8 g3 2 8§ =g £4 Spearman correlation, ANOVA, Pearson correlation, mutual information,
3 E and gain ratio using five classifiers: LR, k-NN, SVM, DT, and RF. As shown
E "E - » in Fig. S14, the proposed method provides better accuracy on the fetal
_S‘-“O ,;EQ ~| € = g El S Z' 5 é o § health dataset than the EFS_Rank, Spearman correlation, ANOVA, Pear-
2|52l 2 g % §& ;. = £ 5E53%°% son correlation, and mutual information using LR, SVM, DT, and RF. In
T £lEFH Z29FRA & SEHTEA the kidney disease dataset, our method outperformed the Spearman
k] 0 correlation, ANOVA, Pearson correlation, and mutual information in
& 3 £ . terms of accuracy using all five classifiers, as shown in Fig. S15. Similarly,
£ k| % b g2 g as shown in Fig. S16, our method outperformed the Spearman correla-
Sl |z = ¢ £8g % ) o . P ¢ e Spearmar
2 g g % ?Z; . i‘; 5 £z % '5 S tion, ANOVA, Pearson correlation, and mutual information using k-NN,
% % g 3 E 9E g g g Z2E Sz SVM, DT, and RF on the ECG dataset. On the hypothyroid dataset, as
= Z shown in Fig. S17, the HDFS(PSO-MI) method outperformed the
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Input: dataset

Split dataset into P distributions

nﬁ‘

Outputs
Objective 3

Outputs

Objective 1| Objective 2

Shared memory

Selecting features

Output: selected features

Fig. 3. Architecture of the parallel execution of the HDFS(PSO-MI).

EFS_Rank, Spearman correlation, ANOVA, Pearson correlation, and
mutual information using LR and SVM, but the EFS_Rank, Spearman
correlation, ANOVA, and Pearson correlation measures yielded better
accuracy using k-NN, DT, and RF. Using the classifiers LR, k-NN, SVM,
and RM, our method showed similar accuracy to all competing feature
selection methods on the unbalanced dataset. However, as shown in
Fig. S18, our method outperformed the EFS_Rank, Spearman correlation,
Pearson correlation, and gain ratio using the DT classifier. On the MOFP

Table 9

Data Science and Management 7 (2024) 64-73

and bioassay datasets, as shown in Figs. S19 and S20, the proposed
method provided better accuracy than all the competing methods using
LR, k-NN, SVM, and RF. However, the DT showed a lower accuracy for
our method on both datasets. As shown in Fig. S21, using the LR, SVM,
and RF classifiers, the proposed FS method outperformed competing
methods. However, using k-NN and DT classifiers, our method yielded
similar accuracy on the Parkinson’s disease dataset. On the cancer gene
dataset, our method performed very well compared with other methods
using all classifiers, as shown in Fig. S22. However, on the colon cancer
dataset, our method provides better accuracy using LR only; with other
classifiers, it showed slightly lower accuracy, as shown in Fig. S23. The
MCC performance measure plays a significant role in validating the FS
method for unbalanced datasets. A high MCC score indicated good pre-
diction results (Chicco and Jurman, 2020). MCC scores computed on all
datasets using different classifiers for our proposed method were
compared with other methods, as shown in Figs. S24, S25, S26, S27, 528,
§29, S30, S31, S32

5.9. Discussion

We developed an efficient hybrid feature selection method, known as

Table 11
Comparision of HDFS(PSO-MI) with other methods using p-value on emotion
dataset.

Methods Logistic k- Support Decision Random
regression NN vector tree (DT) forest (RF)
(LR) machine
(SVM)
EFS_Rank 1 1 1 1 1
Spearman 1 1 1 1 1
correlation
Analysis of 1 1 1 1 1
variance
(ANOVA)
Pearson 1 1 1 1 1
correlation
Mutual 1 1 1 1 1
information
Gain ratio 1 1 1 1 1

Comparision of HDFS(PSO-MI) with other methods using p-value on malaria dataset.

Methods Logistic regression (LR) k-NN Support vector machine (SVM) Decision tree (DT) Random forest (RF)
EFS_Rank 0.72328 0.01987 0.95319 0.8473 1

Spearman correlation 0.18751 0.40029 0.72047 0.8484 0.37546

Analysis of variance (ANOVA) 0.18751 0.40029 0.72047 0.84639 0.03031

Pearson correlation 0.18751 0.40029 0.72047 1 0.45648

Mutual information 0.18751 0.40029 0.72047 0.87766 0.75119

Gain ratio 0.18751 0.40029 0.72047 0.64071 1

Table 10

Comparision of HDFS(PSO-MI) with other methods using p-value on breast cancer dataset.

Methods Logistic regression (LR) k-NN Support vector machine (SVM) Decision tree (DT) Random forest (RF)
EFS_Rank 0.75391 0.07031 0.39153 0.87761 0.5

Spearman correlation 0.30176 0.21875 1 0.21533 0.5

Analysis of variance (ANOVA) 0.30176 0.21875 1 0.20049 1

Pearson correlation 0.30176 0.21875 1 0.31050 1

Mutual information 0.30176 0.21875 1 1 1

Gain ratio 0.30176 0.21875 1 1 0.5
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Table 12

Data Science and Management 7 (2024) 64-73

Comparision of HDFS(PSO-MI) with other methods using p-value on skin cancer dataset.

Methods Logistic regression (LR) k-NN Support vector machine (SVM) Decision tree (DT) Random forest (RF)
EFS_Rank 1 0.38331 1 0.73588 0.32401

Spearman correlation 1 1 1 0.84502 0.67764

Analysis of variance (ANOVA) 1 1 1 0.82380 1

Pearson correlation 1 1 1 0.54126 0.22952

Mutual information 1 1 1 0.42436 1

Gain ratio 1 1 1 0.85055 0.05224

HDFS(PSO-MI) using PSO and MI. This method is highly effective in
selecting an optimal subset of features that can yield high classification
accuracy on different datasets. Although this method does not consider
the class imbalance problem during feature selection, MCC values ensure
that the selected features on various datasets provide a significantly high
classification accuracy. The main advantage of the proposed hybrid
method is that it can select optimal subset features from a high-
dimensional dataset by evaluating possible subsets generated by PSO,
where SVM is used as an evaluator of the subset. Hence, PSO ensures that
the best subset of features can be selected. In the next phase, the method
evaluates each feature of the selected subset to compute their ranks in
terms of their MI scores. Thus, the hybrid method always selects the best
features from the entire feature subset. The experimental results
demonstrate that the proposed method significantly reduces the di-
mensions and redundancies of high-dimensional datasets. In addition,
the feature subset selected by the proposed method yields better results
than the existing filter-based FS methods, that is, mutual information,
gain ratio, Spearman correlation, ANOVA, Pearson correlation, and the
ensemble feature selection with ranking method using five ML classifiers:
LR, k-NN, SVM, DT, and RF. Although the proposed objective function
enhances the PSO algorithm, the computational cost is slightly higher
than those of the two existing objective functions used in our HDFS(PSO-
MI) method.

6. Conclusion and future work

This study introduces an effective hybrid FS method called
HDFS(PSO-MI) using PSO and MI, which selects a subset of optimal
features from a high-dimensional dataset. This method considers
distributed data, and from each distribution, it selects three subsets of
features using three objective functions in the PSO optimization tech-
niques. The UNION of the three subsets is evaluated again for each dis-
tribution to select the high-ranked features as the most optimal. The
computational cost of the hybrid method is high because the evaluation
of the feature subset with PSO using three objective functions requires a
significant amount of time. We applied three objective functions in PSO
to evaluate a possible subset of features in each distribution to reduce the
chance of bias in a single objective function. From the experimental re-
sults, we observed that the proposed HDFS(PSO-MI) selected an optimal
feature subset that provided high classification accuracy on various
datasets. Although the proposed method works well on most datasets
taken from multiple application domains, including five large real data-
sets, the major drawback of the method is its exponential computational
time. The computational time increases asymptotically as the dimension
of the dataset increases and when using three objective functions on the
PSO optimizer. Therefore, an effective mechanism is required for
addressing this issue. In future work, we plan to implement the proposed
method in a distributed parallel programming environment to reduce
computational costs.
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